友情提示:如果本网页打开太慢或显示不完整,请尝试鼠标右键“刷新”本网页!
八二电子书 返回本书目录 加入书签 我的书架 我的书签 TXT全本下载 『收藏到我的浏览器』

细胞叛逆者-第7部分

快捷操作: 按键盘上方向键 ← 或 → 可快速上下翻页 按键盘上的 Enter 键可回到本书目录页 按键盘上方向键 ↑ 可回到本页顶部! 如果本书没有阅读完,想下次继续接着阅读,可使用上方 "收藏到我的浏览器" 功能 和 "加入书签" 功能!


所有细胞——最重要的是包括了视网膜细胞——获得了一份突变基因副本。此后,任何一个视网膜细胞只须再来一次突变就能满足诱发眼癌必须的双重突变条件。 
  回想一下袭击除性腺以外所有细胞基因组的体细胞突变。由于突变的发生纯属偶然,因而同一个视网膜细胞发生两次体细胞突变的可能性是极小的。实际上,在400O名儿童中只有1名患有散发性视网膜神经胶质瘤;而且患儿视网膜肿瘤的数目总是只有1个。 
  相反,家族性视网膜神经胶质瘤发病时,一次偶然的体细胞突变就足以引发肿瘤暴长。由于视网膜中靶细胞的数目庞大(超过1000万),而且单细胞突变的概率为百万分之一,因此继承了突变基因和相关的视网膜神经胶质瘤易患体质的儿童,双眼常常有多个肿瘤发生。这种情况下,每一个视网膜细胞事实上已经危如累卵,一次体细胞突变就可令它踏上不归路。 
  到20世纪即年代中期,有关突变和受穷变影响的基因情况已趋明朗。两个靶基因是坐落在人体第13对染色体上的一个基因的两份副本,它们因为与视网膜神经胶质瘤的相关性而被称作Rb基因。克努森预计每次突变敲掉其中的一份Rb基因副本。当只有一份基因副本失活时,该视网膜细胞仍可凭借幸免于难的另一份基因继续完全正常地生长。然而如果丧失了两份Rb基因,控制细胞繁殖的机制就会被破坏殆尽——细胞失去了它的刹车。 
  哈里斯细胞融合实验预言的肿瘤抑制基因的所有特征,在Rb基因身上均有体现。正常细胞基因组中有Rb基因存在,肿瘤细胞基因组中的Rb基因则或缺失或功能性失活。但是现在,在哈里斯早期研究成果的基础上产生了新的见解。首先,肿瘤抑制基因功能的丧失分成两步,即两份基因副本次第消失。其次,通过精子或卵子,肿瘤抑制基因的缺陷形式能够由父或母传递给子女,导致对肿瘤的先天易患性。 
  在我和撒迪厄斯·德里雅(ThaddeusDryia)各自实验室的共同努力下,通过基因克隆分离了构成Rb基因的DNA序列。克隆使我们能充分估计Rb基因在人类癌症的起源中扮演的角色。乍看之下,Rb基因的作用仅限于引起这种罕见的儿童视网膜肿瘤。可是实际上,所有这类肿瘤中的Rb基因似乎都发生了突变。此外,已知幼年曾患家族性视网膜神经胶质瘤的儿童在青春期罹患骨癌(骨肉瘤)的风险会有上升;此类肿瘤亦可见Rb基因功能丧失。 
  20世纪80年代末,利用最新克隆的Rb基因揭示,三分之一以上的膀胱癌和一小部分(约10%)的乳腺癌中亦有Rb基因丧失,两种都是经由靶器官中的体细胞突变造成的。小细胞肺癌(small-celllungcarcinomas)是烟民最常见的死因之一,对它进行遗传分析的结果令人大吃一惊。所有此类肿瘤,在其形成过程中,几乎都相继抛弃了两份Rb基因副本。 
  我们开始认识到,相对我们最初的设想,即Rb基因仅与一种罕见的儿童肿瘤有关,Rb基因事实上在癌症的起源中扮演着远为广泛的角色。长长一串与Rb相关的癌症类别导致了一个主要疑问:是什么共同的性状把全身上下这许多不同患病器官的细胞联系在一起?身体内所有细胞的Rb基因都起着抑制生长的作用,为什么这些特定组织在丧失Rb基因后特别容易癌变呢?谜底也许要再过很多年才能揭晓。丧失多样性现在我们已经知道了一打以上的肿瘤抑制基因,Rb基因只不过是名单上排名靠前的一个。找出这些基因并非易事。只有当它们缺失时,才能凸显出它们的存在。怎样才能找到这些行踪诡秘在幕后影响细胞的基因呢?其中,有部分基因与视网膜神经胶质瘤这样的家族性癌症相关;同Rb基因一样,它们突变后的缺陷形式能够通过生殖细胞路径传递。其他肿瘤抑制基因则与先天癌症易患性并无关联。体细胞突变就地袭击这个或那个靶器官,然后次第消灭基因的两份副本,使肿瘤抑制基因销声匿迹。巧施一计,我们可以追踪到其中的许多基因。计谋得逞,端赖于肿瘤发育过程中肿瘤抑制基因两份副本丧失的具体遗传机制。最直接的途径是,每代细胞中丧失一份基因副本的频率都是百万分之一。然后,同一细胞或者它的一个直系后代又发生一次百万分之一机会的突变,击垮了另一份幸存的基因副本。失去两份基因之后,细胞启动失控生长。如前所述,同一细胞(或一小群细胞)经历两次突变的概率是由每次突变发生的概率决定的,每代细胞概率约为万亿分之一(百万分之一的平方)。概率这般微小,说明在人类正常的寿命周期中,发生这种事件是极为罕见的。在消除第二份肿瘤抑制基因时,肿瘤细胞通常走了一条捷径。由于人类染色体对中的两个伙伴(例如第13对染色体中,每一个都有一份Rb基因副本)总是肩并肩站在平行队列之中,彼此打量、比较各自的DNA序列,然后交换遗传信息。一个常见后果是,一个染色体中的某个基因序列替代了对方的对应序列。在信息移之前,一对染色体各自的基因可能有着两种不同形式;信息转移后,一种形式丧失了,代之以原本存在于另一个染色体中的基因的第二份副本。结果导致细胞内有两份一模一样的基因副本,而它们原来应该是各具特色的。 
  细胞内部遗传多样性的丧失常被称作”丧失杂合性“。基因的两份副本以同一面目示人——它们同化了。1000次细胞分裂中就有1次会发生这个或那个基因同化的情况。因此,通过这种方法,肿瘤抑制基因完好无损的另一份副本仍有可能轻易丢失。亦即完好的基因副本被抛弃,代之以已经突变的、有缺陷的基因的备用副本。基因同化的概率是百万分之一(基因第一份副本失活的概率)乘以千分之一(复制失活基因、丢弃活性基因),得出每代细胞十亿分之一的概率。 
  癌前肿瘤细胞在癌变过程中,常用此计消除抑制其生长的肿瘤抑制基因的两份副本。它们首先经过突变,失活肿瘤抑制基因的一份副本;然后通过丧失杂合性的同化过程,消灭第二份副本。尤为重要的是,导致同化的染色体信息交换并不局限于肿瘤抑制基因的范围,而是常常涉及染色体上该基因周围的大片区域。一个染色体上,处在肿瘤抑制基因左右两侧的几百个基因也发生了同化现象。 
  当然,相邻基因副本的同化与发育着的肿瘤细胞的生长无关。它们只不过是无辜受株连的旁观者。肿瘤细胞使用同化计谋要对付的大敌只是肿瘤抑制基因。 
  相邻基因的命运为那些试图定位、分离新的肿瘤抑制基因的遗传学家提供了突破口。因为它们丧失了杂合性,所以人们能对散布在肿瘤细胞染色体中的一大堆随机选择的基因进行分析。那些在正常细胞DNA中呈现出两种不同形式,而在他身上的癌细胞中以相同形式出现的基因,正是遗传学家们搜寻的目标。不论何种基因,只要丧失多样性,就意味着它在染色体中靠近某个肿瘤抑制基因,而后者正是肿瘤细胞发育过程中同化的真正目标。 
  按照这种逻辑,遗传学家在肿瘤细胞基因组中进行了几百次搜索,寻找在肿瘤发育中被反复同化的染色体区域。他们疑心这些区域就是肿瘤抑制基因的藏身之处。这些区域一旦被定位,遗传学家就可以运用基因克隆技术找到并分离出嫌疑分子。 
  迄今为止,基因克隆者们发动的大搜捕已经网罗到了一打以上的肿瘤抑制基因。几乎所有的结肠癌在其发育过程中,A户〔基因附近的染色体区域都被同化了。神经纤维瘤的诞生过程中,NF-l基因临近区域丧失了多样性。某些儿童肾癌中WT-l附近的染色体区域可见同样命运,而成年人患此病症时则有VHL区域同化。多种肿瘤发育中可见p16基因丧失杂合性。 
  这份花名册给人的印象是人类基因组拥有很多的肿瘤抑制基因。预计有三四打之多,但这个数字太不精确了。先前的遗传发现导致克隆Rb基因,这次发现了这么多基因也引来一个至今未能揭开的谜团:尽管这些基因中绝大多数可以存在于全身上下很多种细胞中,但是大多数基因在丧失时仅会对某些特定组织的生长产生强烈影响,其他组织毫发无损。 
  但是相对以特定组织为目标的模式而言,某些基因仍然特立独行。p53肿瘤抑制基因在许许多多的癌症中都有不俗表现,多达60%的人类癌症中出现p53的突变形式。p53基因的突变形式还能由父(母)传给子女,后者因而终身具有对癌症和肉瘤的广泛易患性。 
  寻找新的肿瘤抑制基因仍然是费劲的。每一个基因的发现都需要很多人花费很多年的心血。毕竟,发现某类肿瘤细胞的染色体中有丧失杂合性现象的存在,对于分子狩猎队仅仅意味着一个起点,还要梳理几百万个DNA碱基才能找出一个目标肿瘤抑制基因。 
  由于人类基因组工程在人类基因的分类和定位方面不断取得进展,新的肿瘤抑制基因的发现过程得以大大简化了。原来找出一个基因要花几年时间,在不久的将来就能压缩到几个月,癌症遗传之谜的许多空白也将得到填补。掌握了这些基因,我们就能围绕肿瘤在癌变道路上累积的突变癌基因和肿瘤抑制基因,写出许多肿瘤的详实的发展史。 


《细胞叛逆者:癌症的起源》章节:第08章 结肠:癌症发育的一个研究对象  收集:东风书城(24。43。3。33)





  人类的肠道是拿生癌症的沃土。但是在人类发展史上并非历来如此,或者说至少结肠癌直到最近还不是一个常见的死因。现代社会有两件事情发生了变化。现在人类的寿命比从前延长了很多。到20世纪中叶,有许多人已经能活到70岁或80岁这个结肠癌的高发年龄段。一个世纪前,很少有人如此长寿,活到结肠癌的发病年龄。我们的食谱也从以谷物、蔬菜为主,变成越来越倚重肉类和大量脂肪。从流行病学的调查结果,可以清楚地看出膳食结构对人类的影响:非洲某些地区的居民几乎只进食蔬菜和谷物,他们中结肠癌的发病率只有西方的十分之一。 
  到本世纪中,由于寿命不断延长以及膳食结构的改变这两种因素,美国结肠癌的发病率急道上升。一些研究者试图搞清某一特定人类肿瘤的发育史,对于他们来说,结肠是一个极其引人入胜的好地方。在美国,其他许多器官肿瘤的发病率每年只有几百或几千例。而结肠癌的病例却非常丰富——每年的新增病例超过10万人。 
  结肠还有一个独到之处,与其他多数好发癌症的内部脏器不同,结肠易于了解。通过结肠镜——一种由直肠插入的有弹性的光学导管——可以获得结肠腔内壁细胞的直观视图。到20世纪80年代末,经过对正常及癌变的结肠进行了几百万例调查后,人们积累了大量有关这部分复杂组织如何病变的数据。 
  构成正常结肠上皮的细胞——即大肠壁的细胞层——更替通常很快。上皮细胞形成、成熟、然后脱落在结肠腔内,这一典型过程从头到尾只有两三天时间。如此迅速的更替意味着这些细胞只有短暂的有效寿命,这兴许是因为它们易受肠容物——消化物及结肠内的大量细菌…一的侵害。实际上,肠道内壁不断地从火线上撤下短期工作的细胞,换上新队员。这样可以避免有缺陷的受损细胞积累过多,其中包括了生长控制基因已经发生突变的细胞。 
  尽管肠壁在不停地更替,但作为一个整体,它的组织结构通常仍然保持在非常稳定和良好的状态。结肠镜中观察到的肠壁,其整体结构在其主人有生之年都受到精心呵护。但是某些人的肠壁结构发生崩溃,出现了异常的组织。这些畸变组织,有些是外观正常的细胞过多(增生),有些是已经具备部分癌细胞特征(非全部)的细胞簇(异常发育),还有叫做腺瘤和息肉的异常发育的凸于结肠壁的细胞团。 
  变化的极致是明显的癌变生长(瘤形成)。与所有上皮组织癌变一样,它们也被认定属于癌症的范畴,但它们的表现形式有差异。有一些相对稳定,就地安营扎寨;而另外一些则会侵入肠壁的肌肉层,甚而派兵对临近器官进行殖民,肝脏是它们的新大陆。 
  这一系列渐进的病变顺序,不仅是排列复杂的描述性信息的一条捷径。它还包含着一个重要的生物学事实:结肠癌的发育经过一系列步骤,正常细胞和组织经过渐进的畸变,由完全正常始,以高度癌变终。 
  这个渐进变化序列,与我们先前描述的肿瘤是遗传事件长期多阶段发展的最终产物这样一个主题交相呼应。也许结肠壁的各种癌前生长,正是它在从完全正常到彻底癌变道路上的一个中途驿站。如果推断不错,那么恶性肿瘤只能起源于已经异常了的癌前生长,而不是直接发端于正常组织。 
  尽管这种见解很有勉力,但是,与许多癌症起源说一样,它也许只不过是一种简单化的考虑,只是试图凭借一个简单的根本机制来解释复杂现象。事实上,另一种观点也能解释结肠中那各种不同的赘生物类型,亦即正常的结肠壁大踏步转变成各种赘生物,有些还不是太异常,有些则彻底癌变。也许正常细胞偶尔也会越过中间阶段,一步迈进为癌细胞。结肠镜观察未能说明正常组织和异组织彼此之间有何联系。 
  对这些赘生物的突变基因进行分析,给阐明这种关系带来了曙光。巴尔的摩约翰·霍普金斯医学院的贝尔特·沃金斯坦(BertVogelstein)在20世纪助年代后期着手此项工作。他对几种肠道赘生物进行了活检标本分析,寻找明显的遗传异常。他搜集的资料为肿瘤是从正常状态小步演变成恶性状态的观点提供了强有力的佐证;因为在癌变过程中,结肠细胞基因组中累积的突变基因数量不断上升。 
  沃金斯坦发现,在赘生物发展成恶性肿瘤过程中,第5、第17、第18对染色体常常丧失多样性(杂合性)。这一观察结果说明在这些染色体中有肿瘤抑制基因存在,每一个肿瘤抑制基因的丧失对结肠癌的发作都至为重要。 
  第5对染色体上的两份MC肿瘤抑制基因副本,在息肉尚属早期、轻微异常生长阶段时,已经在细胞中发生了突变。随着息肉不断增生,细胞DNA中又出现了另外一个突变基因——ras癌基因。息肉再进一步,丧失一种沃金斯坦称作DCC的肿瘤抑制基因之后,细胞就站在了悬崖边上。最终,结肠癌细胞在这三种基因突变形式之外,还拥有户53肿瘤抑制基因的变体。 
  这种观察结果证明,癌症的发育是一个多步的复杂进程。它强化了肿瘤发育采取达尔文式进程的观点,即突变体不断经受选择,循环往复,形成肿瘤。与此同时,有关正常组织一步演变为熟透了的肿瘤这种观点,其可信度则降到了最低点。 
  并非所有肿瘤都严格遵循这个突变顺序。其他一些尚待发现的基因和基因变体也会取代上述基因登场亮相。但这个注解并不会弱化主导思想。肿瘤的形成的确取决于一系列的突变,这些突变兵连祸结,造就了急速扩张的赘生物以至最终的癌症。 
  显然,突变序列中有肿瘤抑制基因,还包括至少一个癌基因。癌基因高度活化的同时,肿瘤抑制基因失活。再拿汽车来打个比方:癌细胞的生长得益于将油门一踩到底,同时刹车还失灵了。 
  现在有必要对前述癌基因的合
返回目录 上一页 下一页 回到顶部 0 0
快捷操作: 按键盘上方向键 ← 或 → 可快速上下翻页 按键盘上的 Enter 键可回到本书目录页 按键盘上方向键 ↑ 可回到本页顶部!
温馨提示: 温看小说的同时发表评论,说出自己的看法和其它小伙伴们分享也不错哦!发表书评还可以获得积分和经验奖励,认真写原创书评 被采纳为精评可以获得大量金币、积分和经验奖励哦!