友情提示:如果本网页打开太慢或显示不完整,请尝试鼠标右键“刷新”本网页!
价格理论-第4部分
快捷操作: 按键盘上方向键 ← 或 → 可快速上下翻页 按键盘上的 Enter 键可回到本书目录页 按键盘上方向键 ↑ 可回到本页顶部! 如果本书没有阅读完,想下次继续接着阅读,可使用上方 "收藏到我的浏览器" 功能 和 "加入书签" 功能!
得到一个不同的需求曲线。一般来说,全部或全不的需求曲线是在一般需求曲线的右边(如图2.2)。在特殊的事例中,其位置决定于影统区域B等于影线区域A的条件。较为一般的情况是,这种曲线被认为位于一般需求曲线和这种特殊条件决定的曲线之间。全部全不需求曲线在分析某些问题时是有用的,但是,我们将主要研究一般形态的需求曲线。
在需求曲线上“时间”起着三个不同的作用。首先,横轴衡量每单位时间的数量,例如,每月每年对鞋的需求。时间的这种应用还使我们有可能描绘一条连续的曲线以表示如钢琴或房子这样的商品项目。这些商品的购买是以离散数量的方式进行的。其次,需求曲线上的各点应该看成是一些瞬间的选择。这个需求曲线是这一瞬间的快照,并且呈现了在可供选择的各种价格上可能购买的最大数量。在这种情况下,“时间”是作为“在给定的条件下”同义语来使用的。第三,需求曲线依赖于调整的时间长度。使用需求曲线的目的是为了便于分析供给变化的影响。然后,任何供给变化的影响将依赖于在需求曲线上允许做出的对时间长度的调整。在所有时期中最短的时期内,这时的条件只允许有非常小的变动,人们可以看到这时的需求曲线仅有最小的弹性。当允许条件变动的区间扩大时,人们将能够看到,这条需求曲线的弹性增加,如图2.3所示。
供给的概念
如同分析需求一样,在分析供给时,区分供给表和供给量是必要的。供给表把同供给条件一致的价格一数量组合与那些不一致的组合分离开来。通常,供给表被定义为表示将引出的已知供给数量的最低价格。这个定义还包含了这样一种情况,即供给曲线是一条趋向下滑的负斜率曲线,关于这一点以后将看得更加清楚。对于许多问题来说,供给曲线本身并不太重要,它所限定的区域倒是较重要的。像需求曲线一样,供给曲线涉及到三种不同意义时间的运用。在横轴测量每单位时间数量的意义上有时间;在供给曲线上的各点应解释为瞬间的选择的意义上有时间,最后,在描绘供给曲线时,允许有一个适应的时期的意义上也有时间。对最后一种时间的应用,使人们能够描绘出短期和长期的供给曲线。
现在,我们可以把供给和需求这两个工具合在一起,并且概括地考察所谓的供求规律。
需求和供给曲线把相关的或可观测的价格…数量关系限制在图2.4中的一个三角形的、画有交叉影线的区域内。为了更加准确的表述这种关系,需要做不同制度上的假设。在自由市场,图2.4(A)上供给和需求表的交点具有特定的重要意义。在这个特定的价格上,也仅在这个价格上,需求者和供给者的愿望可以同时得到满足。在任何别的价格上,不是需求者要买的东西多于供给者要卖的东西(短缺),就是供给者要卖的东西多于需求者要买的东西(过剩)。在A点,需求和供给背后的潜在力量,而非需求和供给本身,建立起了一种能够平衡供给和需求数量的价格。
如果自由市场不占优势,价格可能不落在点A上。例如,假定政府限定最高价格在OB上,并且有效地执行着。在这种情况下,需求者期望买到BD,供给者则只卖到BC。完整的描述应该确切说明这种互相抵触的愿望如何得到调和。不管怎样,BC将必须在渴望买BD这一较大数量的需求者中间实行配给。CD测定着配给问题的难易和对最高限价的压力。如果解决的方法不是补贴供给者,而是其他的方法,最终的点将落在C上。同样,假定OE是规定的最低价格,并且有效地执行着,需求者想买的仅仅是EF,而供给者想卖EG。现在的问题是对供给者实行配额制,FG测定着执行配额制的难易。
有两个例子可能有助于说明这些概念的作用。首先,考虑一下第二次世界大战中和战后初期的汽车实例,汽车制造商维持着低于供给量和需求量平衡所需价格的牌价。结果是大多数消费者不能用名义牌价买到汽车,他们用付给汽车代销商佣金的形式,或用在旧车交易中降低回扣的形式,或者把全新的汽车当不控制价格的“旧车”买。消费者实际上支付的价格比制造商可能制定的高牌价还要高。如果制造商制定一个较高的牌价,汽车供给数量也会增加,因为较高的价格可能诱导他们不顾较高的成本而推出更多的汽车。不过有一点是清楚的,大量的汽车将意味着对消费者有一个较低的自由市场价格,因为,无论制造商实行何种政策,需求条件是相同的。生产环节的“低价”结果导致较低的汽车产量,还导致最终消费者要对每辆汽车支付较高的价格,以及引起劳动者和消费者的收入重新分配 给汽车代销商。用图2.5可以表示这个过程。如果允许供给和需求背后大量自由活动,那么,均衡数量是在OE。均衡价格是在OC。在名义“牌”价OA时,供给量是OB,但消费者情愿付价格OD来取得OB的数量。结果产生了各种各样间接支付这种价格的形式。最终所付的价格(OD)高于均衡价格(OC),而且,供给量(OB)也低于价格如在OC时的数量(OE)。
第二个例子是工会组织争取提高工资率的行动。工会制订工资率或固定最低工资率(这种工资率假定高于均衡工资率)是根本的限制性行动。由于工会制订的工资高于均衡工资,所以,供给曲线所表示的、愿意在工会制订的工资下工作的人数超过需求曲线所表明的、雇主愿意在这一工资水平上雇用的人数。因此,工会的许多活动就是将可干的工作分配给寻找工作的人。这些就是像收取高额入会费和要求雇主超需求雇用工人这样一些做法的实际经济功能。
在上述分析中,已经运用了均衡价格的概念,关于均衡概念的某种详尽阐述也许是适当的。均衡状态是这样一种状态,它一经确立,就将被维持下去。有三种不同形态的均衡应加以区别:稳定的、亚稳定的和不稳定的。所谓稳定均衡是,如果出现一个小的移动,将会再次回到原始的位置。例如,对于一个负斜率的需求曲线和一个正斜率的供给曲线,如果价格上升到超过均衡价格,供给量将超过需求量。这将产生各种力量发挥作用驱使价格返回到原来的均衡水平。当出现任何移动后,没有再进一步运动的倾向,这就是亚稳定情况。这种情形中的需求曲线和供给曲线恰好重合。不稳定均衡形态是指,从原始位置移动所产生的力量会导致更进一步的移动时的情形。例如,价格上升导致需求量超过供给量,进而引起价格的更高上涨。
弹性概念
需求弹性概念用于描述需求曲线的特性。用一般术语讲,即用于描述价格变动对需求量的影响——价格变动时需求量“扩张”的范围。数量和价格的变化通常由百分数的变动测定,以便取得弹性的测度,这种测度是独立于表述价格和数量时所用的单位。更具体地讲,需求弹性是指需求数量上的百分数变化对价格百分数变化的比率,当“其他事物”已定和价格变动趋向于零时,这个价格百分数的变化对需求量变化负责。用数学术语来讲,需求弹性等于dq/dp·p/q=n,在这里q是需求量,p是价格。对于需求曲线,n值域一般是从0到…8,因为数量和价格的变动方向相反。人们常常试图在一根连接两点的弧线上计算弹性,并反复使用的公式是q2…q1/q1·p1/p2…p1。然而这个公式的答案依赖于取哪个点为起始点。通常,在弧线上没有一种明确的测定弹性的方法,仅有大量的公式用来估计弧弹性和近似弹性的精确值。基于这一理由,比较其他弹性概念,点弹性的概念是较为有用的。
点弹性的概念可以应用于任何函数,例如,在C一定时求A对B的弹性。因此,弹性是任何两个有函数关系变量的一种性质。由此可知,在一般情况下,弹性公式是(aA/aA·B/A)C。可是 在需求分析中,只有两个变量有待处理,弹性公式才可以写成dq/dp·p/q。用数学语言描述,弹性不过就是对一个因数的对数的求导,即d log q/d log p。
在处理需求曲线时,运用弹性概念最重要的理由之一是,它提供了揭示总收益变动的最适合的方法。总收益的变动取决于两个因素:价格变动和数量变动。就负斜率的需求曲线而言,这些因素对总收益有相反的作用。价格降低趋向于减少收益,与这些相关的数量增加又趋向于增加收益;反之,价格上升则趋向于增加收益。如果价格百分数的变化在绝对值上等于相关数量的百分数变化,则这两种作用相互抵消,总收益不变。在这种情况下,从定义上看是清楚的,即需求弹性是…1,一般称为需求的单位弹性。如果价格的百分数变化在绝对值上比相关数量的百分数变化大,这时价格的变动作用占绝对优势,因此,总收益的变动与价格变动是同一方向的,价格降低收入减少,价格上升收益增加。在这种情况下,弹性将在0到1之间取值,并且需求被认为是缺乏弹性的。如果价格的百分数变化在绝对值上比相关数量的变化较小,这时数量的变动作用占绝对优势,所以,总收益的变动与数量变动方向相同,与价格变动则方向相反,当价格下降时总收益增加,当价格上升时总收入减少。此时,弹性在…1到8之间取值,需求被认为是有弹性的。
就几何方法而言,上述关系可用图2.6表示。就解析方法而言,假设价格变化为△p,与价格变化相关的数量变化为△q,
新价格下的总收益
=(q+△q)·(p+△p)
=qp+q△p+p△q+△p△q。当△P接近于零时,△p△q通常与其他项比较趋于非常小,可以被忽略,因此,
总收益的变动=△(pq)=p△q+q△p。用△q除以表达式p△p+q△p,得出,
p△q+q△p/△q=p(1+q/p·△p/△q)=p(1+1/η)=边际收益。边际收益的定义是,每单位数量变化引起的总收益上的变动。如果需求是有弹性的,η将是在-1到-∞之间,因此,1/η是在0到…1之间,公式1+1/η将为正值(在0到1之间),边际收益将为正值,当价格下降时总收益将上升。如果需求是单位弹性,即(-1),式子(1+1/η)将等于零,边际收益将是零,总收益将不变。如果需求是没有弹性的,式子(1+1/η)是负值,当价格下降时总收益将减少。
现在可以指明弹性概念的若干用途了。需求曲线愈没有弹性,供给数量上特定的变动会导致价格上的更大波动。在农业事例中,假定需求曲线是缺乏弹性的,这就意味着每一次供给量的变动将给单位产品价格带来相对的较大变动。此外,每次供给量上的增加意味着总收益的减少。
考察垄断者的情况,即使不了解有关他的产品成本曲线,也能立即下结论,即他决不会在他的需求曲线缺乏弹性的条件下经营。在这种需求曲线条件下,收益将少于较高价格时的收益,而总成本显然是一样的。因为,一般来讲,这时生产较少产品比生产较多产品的成本不会增加(工厂主总是使用生产较多产品,然后将多余部分处理掉的方法来生产较少产品)。不过,假若一个人能够选择一种产业加以垄断的话,他将会选择那种在竞争价格下需求曲线严重缺乏弹性的产业。一旦垄断地位成功地确立起来,价格将被提高到需求曲线上有弹性部分,以利于经营(当然,在弹性区域上的确立点,决定于成本条件)。
另一种需要我们加以考虑的是,垄断者的生产成本为零时的情况。垄断者不会在他的需求曲线缺乏弹性的部分经营,因为在这里,他总可以通过提高价格来增加收入。同样,垄断者不会在需求有弹性的部分经营,因为这时他总可以通过降低价格来增加收益。因此,他将在需求既不是有弹性,也不是无弹性,亦即单位弹性的条件下经营。在此点上,总收益将是最大的。
有时人们会根据需求曲线的弹性,把产品分为奢侈品和必需品,必需品需求缺乏弹性,而奢侈品需求富于弹性。这种关于奢侈品和必需品的定义产生了一些奇怪的结论,例如,这种定义将香烟划归必需品,却将白面包划归奢侈品。事实上,很难以任何有意义的方式给出这两个名词的定义。消费者只有当他认为将一单位货币花费在某一用途上,以得到“价值”、或“效用”、或“满足”,同将这一单位货币花费在另一些用途上能得到的“价值”、或“效用”、或“满足”一样时,他才处于均衡状态。否则,他为什么不从某一用途上减少一单位支出而用于其他用途呢?由此可得出结论,在边际状态下,任何东西都同样是必需的,或同样是非必需的。以后我们将看到,奢侈品一词的定义较多地是就收入变动对它产生的影响而言,而不是就价格变动对它的作用而言。
需求弹性主要决定于替代品的可用性。因而,某一产品的定义越狭窄,可用的替代品就越多,则该产品的需求弹性就越大。故白面包的需求弹性就比面包的弹性大得多。
其他情况均相等
需求函数已定义为诸点的轨迹,该轨迹表示的是,在其他已定条件不变的情况下,在各种不同的价格下,所购买的最大数量。乍看起来:如果需求曲线被规定为所有其他情况均维持不变,则数量和价格就不可能发生变化,需求曲线也就无用途。作为一个并不那么极端的例子,其他情况相等中的“情况”有时包括下列内容:
(1)所有其他产品的价格。
(2)所有其他产品的数量。
(3)消费者的货币收入或货币支出。
如果全部三种情况都包括在其他情况均相等中,那么,所有其他产品的价格和数量都保持不变,货币收入或支出总量也保持不变,则用于某商品的支出货币量也就是已定的,其结果,需求曲线将必然是单位弹性的。很显然,用这种使所有需求曲线都成为单位弹性的方法来定义需求曲线没什么用处的。
规定其他情况均相等的目的是方法论的,并非实质性的。需要探讨的问题并不是事实问题,即并非要探求哪一事物将不变或要变,而是应使用什么原则来选择那些事先假定其保持不变的事物。我们以后将会看到,假定某些必将发生变化的变量保持不变是有用的(某些变数影响我们问题中的一些变量,反过来我们问题中的变量又影响那些变量),理由恰恰是希望分析变量将要发生的变动。例如,考虑一下取消对人造黄油的税收对其价格和产量的影响。免除税收意味着人造黄油的供给将有所变化,问题变成了绘制一条什么样的人造黄油需求曲线的问题,人造黄油需求曲线的形状取决于黄油的哪些条件保持不变,如图2.7所示。
假如黄油的供给完全无弹性,那么,人造黄油的理想需求曲线可画成黄油数量保持不变的样子。另一方面,如果黄油的供给具有完全弹性,那么,人造黄油的理想需求曲线可画成黄油价格保持不变的样子。实际上,黄油的价格和数量在人造黄油价格降低时也将相应出现降低或减少。在这一事例中,该问题必须使用连续逼近法才能最方便地得到解决,如黄油的供给真是具有完全弹性或完全无弹性,那么,新画出的需求曲线将可以直接得到问题的答案,而无需使用连续逼近法。
快捷操作: 按键盘上方向键 ← 或 → 可快速上下翻页 按键盘上的 Enter 键可回到本书目录页 按键盘上方向键 ↑ 可回到本页顶部!
温馨提示: 温看小说的同时发表评论,说出自己的看法和其它小伙伴们分享也不错哦!发表书评还可以获得积分和经验奖励,认真写原创书评 被采纳为精评可以获得大量金币、积分和经验奖励哦!